3 then to eight spur gears in sequence. These gears power eight shafts, each of which activates a crank; these in turn move the jellyfish’s eight tentacles. Each tentacle is designed as a structure with Fin Ray Effect®– a construction derived from the functional anatomy of a fish’s fin. The actual structure consists of two alternating tension and pressure flanks movably connected by ribs. If a flank is subjected to pressure, the geometrical structure automatically bends in the direction of the applied force. Together, the tentacles produce a peristaltic forward motion similar to that of their biological model. Controlling AirJelly’s motion in three-dimensional space is effected by weight displacement. For this purpose, a pendulum is set in motion by two actuators in the X and Y directions. The actuators are positioned at the jellyfish’s “north pole” and are proportionally controlled. The pendulum is 55 centimetres long. AirJelly’s centre of mass is displaced in the direction of the pendulum’s motion; the jellyfish then moves in the same direction. By means of this peristaltic forward motion, AirJelly can move in any spatial direction. Propulsion of a ballonett by means of peristaltic motion is as yet unknown in the history of aviation. AirJelly is thus the first indoor flight object with peristaltic drive. Observation of models from nature gave rise to this new propulsion concept for the airborne jellyfish. With this exhibit, Festo is demonstrating that a central electric drive unit in combination with an intelligent mechanism opens up fascinating opportunities in propulsion systems for lighter-than-air flight. Both in automation and in didactics, Festo sets out to generate enthusiasm among its customers with innovative, fascinating and intelligent solutions; it therefore offers a wide range of electric, pneumatic and hybrid drive units, along with the appropriate sensor systems, control and regulating components.
RkJQdWJsaXNoZXIy NzczNDE0