3 Simple operation: gesture control using armband Optimal layout: function integration in the tightest space Intuitive operating concept using a gesture control system The BionicKangaroo can be controlled by gestures using a special armband. The armband detects the operator’s muscular movements. A position sensor in the armband records the movement of the arm. The armband sends these signals via Bluetooth to the artificial kangaroo’s compact control system, upon which it starts to interact with its operator. Electrical drives for precise movements When standing, the kangaroo touches the floor with both feet and its tail, thus giving it a stable three-point contact. Its tail also provides the necessary balance when jumping. An electric servomotor specifically controls its angle of attack and ensures the corres- ponding compensatory movement. The kangaroo thereby compensates for the countermovement of its legs, which have to be brought forward for the landing phase. The legs are also controlled by two electric servomotors, which sit between the hip and thigh, so that these can be moved forward and backwards. All the control signals here are generated by the compact control system. Pneumatic actuators for dynamic jumping behaviour A Festo DSNUP 20 pneumatic lightweight cylinder is attached along each lower leg, which actuates the leg. The knee and ankle joint are connected via a so-called positive kinematic device, resulting in an interlinked movement sequence. The function of the natural Achilles tendon is adopted by an elastic spring element made of rubber. It is fastened at the back of the foot and parallel to the pneumatic cylinder on the knee joint. The artificial tendon cushions the jump, simultaneously absorbs the kinetic energy and releases it for the next jump. Integrated controls and real-time diagnostics The condition monitoring as well as the precise control technology ensure the required stability when jumping and landing. The energy status of the kangaroo, the manipulated variables and angle of attack are constantly monitored and evaluated. At the same time, the control system processes multiple sensor values. They go into complex control algorithms, which result in the manipulated variables for triggering the cylinders and motors. Highly complex overall system: clever combination of drives, control technology and the mobile energy supply Motors for hips and tail Compressed air reservoir Valve CECC control system Sensor system Elastic spring element Sensor system
RkJQdWJsaXNoZXIy NzczNDE0